VDM Metals

VDM[®] Alloy C-263 Nicrofer 5120 CoTi

Anthintenti

Material Data Sheet No. 4020 February 1993 Edition

The high-temperature alloy Nicrofer 5120 CoTi is a precipitation-hardening creep-resisting nickel-chromium-cobalt-molybdenum alloy developed by Rolls-Royce.

It is normally supplied in the high-temperature annealed condition and is recommended for service up to 850 $^\circ C$ (1560 $^\circ F).$

Nicrofer 5120 CoTi is characterized by:

- excellent resistance to oxidation and scaling up to 1000 °C (1800 °F)
- good mechanical properties and excellent creep values at elevated temperatures
- good weldability without susceptibility to post-weld heat treatment cracking
- improved wear characteristics

kelles Star	Country	Material designation	Statement Statement Statement		and Standard Standard Standard	Specification	1	Ostar San sa sa sa sa sa		and
tert and	National standards		Chemical compositio	Tu on seamless	be and pipe welded	Sheet and plate	Rod and bar	Strip	Wire	Forgings
her and	D WL	WNr. 2.4650 NiCo20Cr20MoTi	Teil 1 + 2	States States State		Teil 1	Teil 2	Teil 1		Teil 2
ter for	F AFNOR	NCK20 D		Start Start St		AIR 9165	AIR 9165	andre stander stand		AIR 9165
	UK BS		and a star and a star a st	HR 404		HR206	HR 10			
	USA ASTM ASME AMS	UNS N07263				Start Start Start				
helve God			5872	State States State	- or our	5872		5872		
	ISO	NiCo20Cr20Mo5Ti2Al			and a start of the					an a
harran .	Fable 1 – Designat.	ions and standards.			Stand Stand Stand		Sanner Stanner S			a datar datar datar datar
C	Chemical composi	ition	1	Start Start Start	Staffar Staffar Staffar Staffar	Station Station Station	Station Station St	aller Shiften Shafee	Stration Station	Station Station Sta
te e Trans	Ni seren a	Cr Fe		Destrict Statement State	Mn	Si	Cu	Mo		ά
	min	10.0		04				56	Start Start	90

Designations and standards

tert and states	N.	J Share Share Share	Cr	Fe	C and star of	Mn	Si	Cu	Mo	Co
min.		al.	19.0	and the area	0.04				5.6	19.0
max			21.0	0.7	0.08	0.6	0.4	0.2	6.1	21.0
			and Start Start Star							
terreserve Sterres	A	J Section Section Sec	Ti garan garan gar	Al + Ti	Portan survey survey	S	B. J. J.	Pb*	Ag*	Zr*
min.	0	.30	1.90	2.40	and Stateman Stateman Stateman	General General General				
max	к. О.	.60	2.40	2.80	0.015	0.007	0.005	0.002	0.0005	0.02

*determination only if requested

Table 2 – Chemical composition (wt.-%).

Physical properties

s

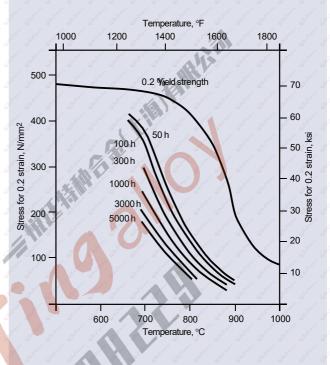
Density	8.4 g/cm ³	0.30 lb/in.3
Melting temperature	1300 – 1360 °C 2	370 – 2480 °F
Permeability at 20 °C/68 °F (RT)	< 1.	.001

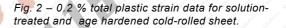
Temperatu	ıre (T)	Specific h	eat	Thermal conductivi	ty	Electrical resistivity		Modulus of elasticity		Coefficient thermal ex between room temp and T	pansion
°C	of F of the of	J kg K	<u>_Btu</u> Ib °F	<u> W</u> m K	<u>Btu in.</u> ft²h ⁰F	μΩcm	Ω circ mil	<u>kN</u> ft mm ²	10 ³ ksi	<u>10-</u> 6 K	<u>10-</u> ₀
States States States	32	422	0.100	11.6	81	115	688	223	32.3		
20	68	426	0.102	11.7	81	115	692	222	32.3		
93	200		0.106		89	Station St. C.	700	Station Station State	31.6		6.0
100	212	447		13.0	States States States	117	and Section Statements	218		10.7	
200	392	472		14.7	0%	118	Star Star	212		12.0	
204	400		0.113	Start Start	102	Star Star S	713		30.6		6.7
300	572	497		16.3		120		206		12.5	
316	600		0.119	A SAT	115		725	Strand Strand	29.6		7.0
400	752	523	and and a set of and and	18.0	and Care	122		198		13.0	
427	800		0.126		128		737		28.4	Andream Andream Andre	7.3
500	932	548	and and a	19.7		124		192		13.5	
538	1000	Starting of Star	0.133	and a starting of the starting	141	Station Station S	751		27.2	Staffard Staffard Staff	7.6
600	1112	573	and out	21.4	Sector Statement Statement	126		184		14.1	
649	1200	Jacob Star	0.139		154		761		25.9		8.0
700	1292	598	Carrier Carrier Car	23.0		126		176		14.9	
760	1400		0.146	our our	167		755		24.3		8.5
800	1472	624		24.7		125	alter Charline Charline	165		15.9	
871	1600	an State of the	0.153		181		747		22.6		9.2
900	1652	649	and states of the	26.8	aller Start Start	124		153		17.2	
982	1800	1999 S.	0.159		196		746		20.8		9.9
1000	1832	674		28.5		124		143		18.2	

Table 3 – Typical physical properties at room and elevatedtemperatures.

Mechanical properties

The following properties are applicable to Nicrofer 5120 CoTi in the indicated size ranges (see availability). Specified properties of material outside these size ranges are subject to special enquiry.


A. Hot or cold-rolled sheet, solution treated and descaled Hardness max. 250 HB Panding (parellel to the rolling direction)


bending (parallel to the	rolling direction)	 IOU
≤ 1.27 mm	≤ 0.050 in.	factor 1
> 1.27 to 4.75 mm	> 0.050 to 0.187 in.	factor 2
Grain size		
hot-rolled sheet	≤ 127 μm	ASTM No.3
cold-rolled sheet	≤ 90 µm	ASTM No.4

B. Hot or cold-formed, solution treated, precipitationhardened and descaled After precipitation hardening the product will meet the

following properties at 780 \pm 2 °C (1435 \pm 3 °F) after 20 min. at temperature:

Tensile strength	Rm 🍼 🍼 🤞	≥ 540 N/mm ²	≥ 78.5 ksi
Yield strength	Ro0.2	≥ 400 N/mm ²	≥ 58.5 ksi
Elongation	A5	≥ 15 %	
		inuous stress of	Star Star St
Contract Station Station	120 N/mm	12/17 ksi for 50 hours	Station Station - Station
	total plastic	c strain ≤ 0.1 .%	

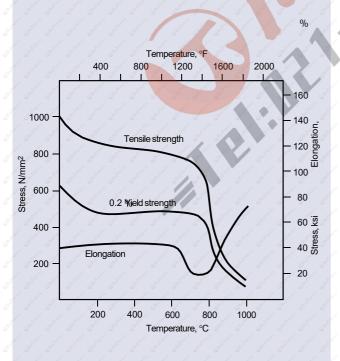
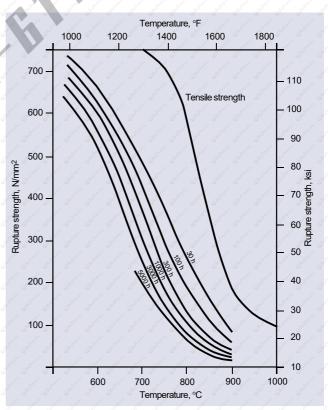



Fig. 1 – Typical short-time properties of solution-treated and precipitation-hardened Nicrofer 5120 CoTi sheet and plate at room and elevated temperatures.

%

%

Fig. 3 – *Creep rupture values of solution-treated and age hardened cold-rolled sheet.*

Metallurgical structure

The high-temperature strength of Nicrofer 5120 CoTi is obtained by two strengthening mechanismus. The cobalt and molybdenum additions give solid-solution strengthening. The aluminium and titanium additions form precipitates of the γ '-phases Ni₃(Al, Ti) on age-hardening.

The cobalt addition also increases the solubility of γ' above 1100 °C (2010 °F), thus facilitating hot working despite the high aluminium and titanium contents.

Boron and zirconium also improve creep rupture properties.

In the fully heat-treated condition, the microstructure of Nicrofer 5120 CoTi shows fine discontinuous precipitates of carbides ($M_{23}C_6$) at the grain boundaries.

Continuous $M_{23}C_6$ films must be avoided, as this can lead to poor ductility and hot trearing during welding. Correct solution treatment will avoid this effect.

Corrosion resistance

Nicrofer 5120 CoTi shows excellent oxidation resistance up to 1000 °C (1830 °F).

Applications

Due to its high-temperature corrosion resistance and excellent high-temperature strength up to 815 °C (1500 °F), combined with ease of fabrication and weldability, Nicrofer 5120 CoTi findswide application in high-temperature service, especially in aircraft and istustrial gas turbines. Examples are combustion chambers, exhaust cones and rings.

Fabrication and heat treatment

Nicrofer 5120 CoTi is readily fabricated by usual industrial procedures.

Heating

It is very important that the workpiece be clean and free from any contaminant before and during heating.

Nicrofer 5120 CoTi may become embrittled if heated in the presence of contaminants such as sulphur, phosphorus, lead and other low-melting-point metals. Sources of contamination include marking and temperature-indicating paints and crayons, lubricating grease and fluids, and fuels. Fuels must be low in sulphur; e.g. natural and liquefied petroleum gases should contain less than 0.1 % by mass and town gas 0.25 g/m³ maximum of sulphur. Fuel oils containing no more than 0.5 % by mass sulphur are satisfactory.

Electric furnaces are desirable due to close control of temperature and freedom from contamination. Gas-fired furnaces are acceptable if impurities are at low levels.

The furnace atmosphere should be neutral to slightly oxidizing and must not fluctuate between oxidising and reducing. Flame impingement on the metal must be avoided.

Hot working

Nicrofer 5120 CoTi may be hot-worked in the range 1170 to 950 °C (2140 to 1740 °F). Cooling should be by water quenching or as fast as possible.

During the final hot working operation, the temperature must not exceed 1120 °C (2050 °F).

Solution treatment is recommended after hot working to ensure optimum properties.

For hot working, the material may be charged into the furnace at maximum working temperature.

Cold working

Cold working should be carried out on solution-treated material. Nicrofer 5120 CoTi has a much higher work-hardening rate than austenitic stainless steel and the forming equipment must be adapted accordingly.

When cold working is performed, interstage annealing may become necessary.

Heat treatment Solution treatment should be carried out at 1150 \pm 10 °C (2100 \pm 15 °F),

sheet and plate5 to 15 min. WQor AC,rod and bar0.5 to 2.5 h WQto hardness of max. 230 HB.

Intermediate softening between cold-forming processes at 1080 \pm 10 °C (1980 \pm 15 °F), 4 to 6 min., AC.

Diffusion annealing of welding seams at 1150 °C (2100 °F) 1 h AC.

Precipitation heat treatment should be carried out at 800 \pm 15 °C (1475 \pm 25 °F), ageing time at temperature 8 hours \pm 0.5 h, AC to hardness of min. 275 HV.

During any heating operation the precautions outlined earlier regarding cleanliness must be observed.

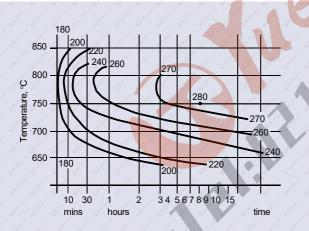


Fig. 5 – Effect of ageing time and temperature on hardness (HV) of solution-treated sheet material with initial hardness HV 30 - 180.

Descaling

Oxides of Nicrofer 5120 CoTi and discoloration adjacent to welds, are more adherent than on stainless steels. Grinding with very fine abrasive belts or discs is recommended.

Before pickling in a nitric/hydrofluoric acid mixture, oxides must be broken up by grit-blasting or by pretreatment in a fused salt bath.

Machining

Nicrofer 5120 CoTi should be machined in the annealed condition. The alloy's high work-hardening rate should be considered; i.e. only low surface cutting speeds are possible compared with low-alloyed standard austenitic stainless steel. Tools should be engaged at all times. Heavy feeds are important in getting below the work-hardened 'skin'.

Joining

The precipitation-hardening alloy Nicrofer 5120 CoTi is suitable for the fabrication of complex welded structures, and can be repair-welded. Weld ductility, ease of fabrication and high strength are the main advantages of this quaternary alloying system.

Nicrofer 5120 CoTi can be welded by conventional processes as gas tungsten-arc (TIG/GTAW), plasma, laser, and electronbeam welding; heavier wall thicknesses can be welded with MIC pulsed-arc welding.

Matching material or the following welding products are recommended:

TIG/MIG-PA Nicrofer S 5120

W.-Nr. 2.4650 NiCo20Cr20MoTi BS 2901 NA38

Prior to welding, material should be in the annealed condition, clean and free from scale, grease, marking paints, etc. A zone approximately 25 mm (1 in.) wide on each side of the joint should be ground to bright metal.

Low heat input is necessary. Interpass temperature should not exceed 100 $^\circ C(210\ ^\circ F).$

Nicrofer 5120 CoTi is not susceptible to post-weld heat treatment cracking, due to the very low ageing rate which permits stress relief to take place prior to precipitation of γ '-phase. It is also free from heat-affected-zone cracking.

Availability

Nicrofer 5120 CoTi is available in the following standard mill products forms.

Sheet and plate

(for cut-to-length availability, refer to strip)

Conditions:

hot or cold rolled (hr, cr), solution-treated and pickled

Thickness mm	hr/cr	Width* mm	Length* mm
1.10 - < 1.	i0 cr	2000	6000
≥ 1.50-< 6.) cr	2000	6000
≥ 6.0 -<10.) 5 cr 5 st	2000	4000**
≥ 6.0 -<10.	hr of states	2000	4000**
≥ 10.0 -<20.	hr hr	2000	2500**
≥ 20*	hr	and control control	The second second

inches	n dr. dr.	5 5 5 5 	inches	inches
0.043	3-<0.060	· Start Start Start St	80	240
≥ 0.060) - <1/4	Cr Jun Jun J	80	240
$\geq 1/4$	- < ³ / ₈	cr	80	160**
$\geq 1/4$	- < ³ / ₈	hr	80	160**
≥ ³ /8	- < ³ / ₄	hr	80	120**
$\geq 3/4^*$		hr of of		State State

*other sizes subject to special enquiry **depending on piece weight

Disc and ring Conditions: hot rolled or forged, solution-treated, pickled or machined

	Product	Weight kg	Thickness mm	o.d.* mm	i.d. mm
The state	Disc	≤ 4000	≤ 200	≤ 2000	- Other Start S
	Ring	≤ 3000	≤ 200	≤ 2500	on request
		مىن مىن مىن		States States Sta	Charles Starter St
3	ind Station Station Stat	lb 🧹 🖉	inches	inches	inches
	Disc	≤ 8800	≤8	≤ 80	-Stational Stational S
	Ring	≤ 6600	≤8	≤ 100	on request
	*other eizes out	iant to openial op	auin (

*other sizes subject to special enquiry

Rod and bar Conditions: forged, rolled, drawn, solution-treated or precipitation hardened, pickled, machined, peeled or ground

Product	forged* mm	rolled* mm	drawn* mm
round d	≤200	15 – 75	12-65
square a	40-300	15 – 100	12-65
flat a xb	40 - 80 x 200 -600	5 - 20 x 120 - 600	10-20 x 30-80
hexagon s	40 - 80	13 – 50	12-60
3" - A - 3" - 3"			

	inches	inches	inches
round d	≤8	⁵ /8 – 3	¹ / ₂ -2 ¹ / ₂
square a	1 ⁵ /8–12	⁵ /8 – 4	¹ / ₂ -2 ¹ / ₂
flat a x b hexagon s	1 ⁵ / ₈ -3 ¹ / ₈ x 8-24	³ / ₁₆ − ³ / ₄ x 5 −24	$3/_{8} - 3/_{4}$ x1 ¹ / ₄ -3 ¹ / ₈
State State	1 ⁵ /8-3 ¹ /8	¹ / ₂ -2	¹ / ₂ -2 ³ / ₈

*other sizes subject to special enquiry

Forgings

Shapes other than discs, rings, rod and bar are subject to special enquiry.

Strip*

Conditions: cold rolled, annealed and pickled or bright annealed**

Thickness mm	Width mm	Stefaner		Coil i.d. mm		
0.04 -≤ 0.10	30 - 120	100	300			
> 0.10 - ≤ 0.20	4-200	area atertion	300	400		
> 0.20 - ≤ 0.25	4-400		300	400		
> 0.25 - ≤ 0.60	5-635		300	400		
>0.60 - ≤ 1.0	8-635		Str. Str	400	500	
> 1.0 - ≤ 2.0	15-635			400	500	600
> 2.0 - 3.0	25-635			400	500	600
inches	inches	aren aretinaren	terfinantin stat	inches	the first of the	and the france
0.0016 - ≤ 0.004	1.20-5 4		12	and and		and the second
> 0.004 - ≤ 0.008	0.16 – 8		12	16		
> 0.008 - ≤ 0.010	0.16 – 16		12	16		

> 0.008 -	-≤0.010	0.16 - 16		12	16	Stell Stell	
> 0.010 -	-≤0.024	0.20 - 25	Sterror	12	16	Stration Strat	
> 0.024 -	-≤0.04	0.32 - 25	and station		16	20	of the second
> 0.04	-≤0.08	0.60 - 25			16	20	24
> 0.08	0.12	1.0 – 25			16	20	24

*cut-to-length available in lengths from 500 to 3000 mm (20 to 120 in.) **maximum thickness 3.0 mm (1/8 in.)

and States and

Wire Conditions: bright drawn, 1/4 hard to hard or bright annealed Dimensions: 0.01 - 12.7 mm (0.0004 - 1/2 in.) diameter in coils, pay-off packs, on spools and spiders.

Welding filler metals

Suitable welding rods, wire and wire electrodes are available in standard sizes.

Imprint

Date of publication February 1993

Publisher VDM Metals GmbH Plettenberger Straße 2 58791 Werdohl Germany

Disclaimer

All information contained in this data sheet are based on the results of research and development work carried out by VDM Metals GmbH, and the data contained in the specifications and standards listed available at the time of printing. The information does not represent a guarantee of specific properties. VDM Metals reserves the right to change information without notice. All information contained in this data sheet is compiled to the best of our knowledge and is provided without liability. Deliveries and services are subject exclusively to the relevant contractual conditions and the General Terms and Conditions issued by VDM Metals GmbH. Use of the most up-to-date version of this data sheet is the responsibility of the customer.

L'HATEMEN